a bunch of metal rings are stacked on top of each other

Nitronic 60

Nitronic 60

Nickel (Ni) - 8.5
Copper (Cu) - 3.0
Chromium (Cr) - 17.0
Iron (Fe) - 62.0
Manganese (Mn) - 8.0
Silicon (Si) - 4.0
Other

Key

Nickel
Copper
Chromium
Aluminum
Molybdenum
Iron
Titanium
Manganese
Cobalt
Other
  • Nickel (Ni) 8.5
  • Copper (Cu) 3.0
  • Chromium (Cr) 17.0
  • Molybdenum (Mo) 0.75
  • Iron (Fe) 62.0
  • Manganese (Mn) 8.0
  • Carbon (C) 0.08
  • Silicon (Si) 4.0
  • Nitrogen (N) 0.01

UNS S21800

As industries push the boundaries of engineering and design, it is crucial to select a material that withstands and excels under extreme conditions. Nitronic 60, a high-performance austenitic stainless steel, is engineered to provide superior mechanical properties and exceptional adaptability across various challenging environments.

Renowned for its unparalleled galling resistance and exceptional wear properties, Nitronic 60 stainless steel offers a robust solution for applications that require strength and longevity. For manufacturers, engineers and procurement specialists seeking a reliable material, Nitronic 60 stands out as a top-tier choice.

Nitronic 60 obtains its galling resistant properties from the additions of manganese and silicon. In most environments, it has better corrosion resistance than 304 Stainless. Generally, its corrosion resistance is not as good as 316 Stainless. Compared to 304 and 316 Stainless, Nitronic 60’s yield strength in the annealed condition is almost double. It exhibits decent strength and maintains its anti-galling properties up to 1500°F. In some tests, Nitronic 60 material has outperformed more expensive cobalt alloys in wear resistance. Nickel Systems stocks nuts in Nitronic 60 ranging from 1/2-13 to 1”-8 in both finished and heavy pattern certified to ASTM A194 Grade 8S. Most designs of a gall-resistant joint require only one component to be gall resistant. Consequently, there is not much demand for male parts (hex bolts and stud bolts).

Request a Quote

Summary

  • Environment:
    Moderately Corrosive: Acids & Chemicals
  • Temperature Limit:
    1800 °F / 982 °C
  • Ultimate Tensile (Typical):
    95 ksi / 655 mpa

Specifications & Technical Data

If your question isn’t answered below, download the technical data sheet here.

Specifications

  • Bolts: ASTM A193 & ASME SA193 GRADE B8S
  • Nuts: ASTM A194 & ASME SA194 GRADE 8S
  • Bar: ASTM A276 & A479
  • W-Nr 1.7440

Mechanical Properties

Typical Room Temperature Tensile Properties
Condition ø Size, mm (in.) Hardness UTS, MPa (ksi) 0.2% YS, MPa (ksi) Elongation % in 4D0 Reduction of Area %
Annealed 25.4 (1) 95 HRB 710 (103) 414 (60) 64 74
Annealed 44.4 (1.75) 100 HRB 696 (101) 386 (56) 62 73
Annealed 57.2 (2.25) 100 HRB 696 (101) 414 (60) 60 76
Annealed 76.2 (3) 97 HRB 779 (113) 448 (65) 55 67
Annealed 104.8 (4.125) 95 HRB 731 (106) 386 (56) 57 67
10% Cold Drawn 11.2 (0.442) ø Start Size 24 HRC 827 (120) 627 (91) 51 68
20% Cold Drawn 11.2 (0.442) ø Start Size 31 HRC 965 (140) 772 (112) 35 65
30% Cold Drawn 11.2 (0.442) ø Start Size 34 HRC 1110 (161) 910 (132) 26 62
40% Cold Drawn 11.2 (0.442) ø Start Size 38 HRC 1344 (195) 1055 (153) 20 57
50% Cold Drawn 11.2 (0.442) ø Start Size 41 HRC 1496 (217) 1200 (174) 15 53
60% Cold Drawn 11.2 (0.442) ø Start Size 43 HRC 1655 (240) 1344 (195) 12 48
70% Cold Drawn 11.2 (0.442) ø Start Size 46 HRC 1813 (263) 1496 (217) 10 40

 

Typical Bearing Properties ASTM E238
Condition Bearing Strength, MPa (ksi) Bearing yield Strength, MPa (ksi) UTS, MPa (ksi) 0.2% YS, MPa (ksi) Elongation % in 4D0 Hardness, (R)
Annealed 1313 (190.5) 548 (79.5) 723 (104.9) 360 (52.2) 49 B90
10% Cold Rolled 1462 (212) 916 (132.8) 849 (123.1) 625 (90.6) 40 C26

 

Typical Engineering Stress-Strain Curve of Nitronic 60 in Tension

Typical Room Temperature Torsion and Shear Properties
Condition Diameter, mm (in.) Hardness HRB Torsional Modulus G, GPa (Mpsi) 0.2% Torsional YS, MPa (ksi) Modulus of Rupture, MPa (ksi) Double Shear Strength, MPa (ksi)
ɣ ε
Annealed 25.4 (1) 95 61 (8.83) 337 (48.9) 350 (50.7) 855 (124)
Annealed 9.5 (0.375) 95 593 (86)

 

Double Shear Strength (Cold Drawn – 11.23mm (0.442 in.) Start Size)
% Cold Drawn Shear Strength, MPa (ksi)
10 614 (89)
20 676 (98)
30 731 (106)
40 779 (113)
50 841 (122)
60 896 (130)

 

Fatigue Strength (R.R Moore Machine)
Condition Diameter, mm (in.) Hardness Fatigue Limit, MPa (ksi) 108 Cycles
Annealed 25.4 (1) 95 HRB 258 (37.5)
Cold Worked 54.6% 17.8 (0.70) 44 HRC 500 (72.5)

 

Room Temperature Compression Strength
Condition Diameter, mm (in.) 0.2% YS, MPa (ksi)
Annealed 12.7 (0.500) 466 (67.6)
Cold Drawn 39% 11.2 (0.440) 834 (121.0)

 

Properties Acceptable for Material Specification (Bar and Wire)
Condition Diameter, mm (in.) UTS, MPa (ksi) 0.2% YS, MPa (ksi) Elongation % in 4D0 Reduction of Area % Hardness HRB
Annealed ≤ 12.7 (0.5) 724 (105 min) 379 (55 min) 35 min 55 min 85 min
Annealed > 12.7 (0.5) 655 (95 min) 345 (50 min) 35 min 55 min 85 min

 

Typical Elevated Temperature Mechanical Properties (Annealed 19.05 and 25.4 mm (0.75 and 1 in.) Diameter Bar Stock)
Test Temperature, °C (°F) UTS, MPa (ksi) 0.2% YS, MPa (ksi) Elongation % in 4D0 Reduction of Area % Brinell Hardness
Room Temperature 734 (106.5) 389 (56.5) 62 72 200
93 (200) 677 (98.2) 306 (44.4) 63 72 187
149 (300) 620 (89.9) 260 (37.8) 64 74
204 (400) 580 (84.4) 227 (32.8) 64 74 168
260 (500) 566 (82.1) 222 (32.1) 62 73
316 (600) 555 (80.5) 205 (29.7) 60 73 155
371 (700) 548 (79.5) 201 (29.2) 59 73
427 (800) 540 (78.3) 200 (29.0) 57 72 148
482 (900) 532 (77.1) 195 (28.3) 54 72
538 (1000) 520 (75.4) 193 (28.0) 52 70 145
593 (1100) 494 (71.6) 198 (28.7) 49 70
649 (1200) 459 (66.6) 194 (28.1) 48 70 144
704 (1300) 407 (59.0) 189 (27.5) 41 50
760 (1400) 344 (49.8)* 174 (25.3) 47 54 143
816 (1500) 255 (37.0)* 164 (23.8) 73 75
816 (1500) 208 (30.2)* 113 (16.4) 73 110

 

Elevated Temperature Tensile Properties (Cold Swaged 54% to 17.8 mm (0.700 in.) Diameter)
Test Temperature, °C (°F) UTS, MPa (ksi) 0.2% YS, MPa (ksi) Elongation % in 4D0 Reduction of Area %
Room Temperature 649 (1200) 1489 (216) 12 55
93 (200) 1482 (215) 1413 (205) 12 54
149 (300) 1420 (206) 1372 (199) 11 52
204 (400) 1379 (200) 1338 (194) 11 51
260 (500) 1344 (195) 1317 (191) 11 48
316 (600) 1331 (193) 1296 (188) 11 47
371 (700) 1317 (191) 1213 (176) 10 47
427 (800) 1310 (190) 1269 (184) 9 46
482 (900) 1289 (187) 1220 (177) 11 44
538 (1000) 1234 (179) 1145 (166) 11 47
593 (1100) 1117 (162) 993(144) 13 52
649 (1200) 772(112) 496 (72) 11 25

 

Elevated Temperature Stress Rupture Strength (Annealed Bars 16.0 to 25.4 mm (0.625 to 1 in.) Diameter)
Temperature, °C (°F) Number of Heats Stress Rupture Strength, MPa (ksi)
100 hr life 1000 hr life 10000 hr life
538 (1000) 3 496 (72) 359 (52) 241 (35)
593 (1100) 3 338 (49) 214 (31) 138 (20)
649 (1200) 4 200 (29) 117 (17) 69 (10)*
732 (1350) 1 97 (14) 55 (8)
816 (1500) 1 46 (6.7) 28 (4)

 

Cryogenic Tensile Properties
Condition Diameter, mm (in.) Temperature, °C (°F) UTS, MPa (ksi) 0.2% YS, MPa (ksi) Elongation % in 4D0 Reduction of Area %
Annealed 9.5 (0.375) -73 (-100) 1069 (155) 524 (76) 57 69
9.5 (0.375) -129 (-200) 1172 (170) 600 (87) 56 71
25.4 (1) -196 (-320) 1469 (213) 752 (109) 60 67
Cold Swaged 54% 17.8 (700) -196 (-320) 2220 (322) 1875 (272) 10 53
17.8 (700) -129 (-200) 1979 (287) 1724 (250) 13 62

 

Low Temperature Mechanical Properties of Nitronic 60 Stainless Steel Longitudinal Tensile Specimens
Test Temperature, °C (°F) UTS, MPa (ksi) 0.2% Offset YS, MPa (ksi) Elongation % in 25,4 mm (1 in.) or 4D0 Reduction of Area % Fracture Strength, MPa (ksi) Modulus of Elasticity, GPa (Mpsi) N/U tensile* Ratio Charpy V-Notch Impact, J (ft•lbs)
24 (75) 754(109.3) 400 (58.1) 66 79 2317 (336.1) 165 (24.0) 1.44 310 (231)
-18 (0) 883(128.1) 464 (67.3) 71 80 2988 (433.4) 163 (23.7) 1.37 292 (216)
-73 (-100) 1023 (148.4) 537 (77.9) 71 81 3083 (447.1) 167 (24.2) 1.45 267 (197)
-129 (-200) 1155 (167.6) 603 (87.4) 62 78 3151 (457.0) 167 (24.2) 1.46 231 (170)
-196 (-320) 1502 (217.9) 699(101.4) 60 66 4095 (594.0) 171 (24.8) 1.26 188 (138)
-253 (-423) 1405 (203.8) 864(125.3) 24 27 1914 (277.6) 171 (24.8) 1.33

*6.35 mm (0.250 in.) diameter, machined from a 25.4 mm (1 in.) diameter annealed and straightened bar. Four specimen average. Average Stress Concentration Factor Kt =7.0 .

Impact Properties
Condition Diameter, mm (in.) Test Temperature, °C (°F) Charpy V Notch Impact, J (ft•lbs)
Annealed 25.4 (1) Room Temperature 325 (240)
-73 (-100) 310 (229)
-196 (-320) 195 (144)
Annealed 54.2 (2.25) Room Temperature 325 (240)
 -73 (-100) 325 (240)
-196 (-320) 217 (160)
Cold Swaged 18% Hardness RC29 23.7 (0.932) -196 (-320) 91 (67)
Cold Swaged 40% Hardness RC37 20.2 (0.795) -196 (-320) 54 (40)
Cold Swaged 54% Hardness RC42 17.8 (0.700) -196 (-320) 35 (26)
Cold Swaged 18% Hardness RC29 23.7 (0.932) -129 (-200) 122 (90)
Cold Swaged 40% Hardness RC37 20.2 (0.795) -129 (-200) 60 (44)
Cold Swaged 54% Hardness RC42 17.8 (0.700) -129 (-200) 41 (30)

Galling Resistance

Unlubricated Galling Resistance of Stainless Steels Threshold Galling Stress in MPa (ksi) (Stress at Which Galling Began)
Conditions & Nominal Hardness (Brinell) Type 410 Type 416 Type 430 Type 440C Type 303 Type 304 Type 316 17-4 PH® NITRONIC 32 NITRONIC 60
Hardened & Stress Relieved (352) Type 410 21 (3) 28 (4) 21 (3) 21 (3) 28 (4) 14 (2) 14 (2) 21 (3) 317 (46) 345 (50+)
Hardened & Stress Relieved (342) Type 416 28 (4) 90 (13) 21 (3) 145 (21) 62 (9) 165 (24) 290 (42) 14 (2) 310 (45) 345 (50+)
Annealed (159) Type 430 21 (3) 21 (3) 14 (2) 14 (2) 14 (2) 14 (2) 14 (2) 21 (3) 55 (8) 248 (36)
Hardened & Stress Relieved (560) Type 440C 21 (3) 145 (21) 14 (2) 76 (11) 34 (5) 21 (3) 255 (37) 21 (3) 345 (50+) 345 (50+)
Annealed (153) Type 303 28 (4) 62 (9) 14 (2) 34 (5) 14 (2) 14 (2) 21 (3) 21 (3) 345 (50+) 345 (50+)
Annealed (140) Type 304 14 (2) 165 (24) 14 (2) 21 (3) 14 (2) 14 (2) 14 (2) 14 (2) 207 (30) 345 (50+)
Annealed (150) Type 316 14 (2) 290 (42) 14 (2) 255 (37) 21 (3) 14 (2) 14 (2) 14 (2) 21 (3) 262 (38)
H950 (415) 17-4 PH 21 (3) 14 (2) 21 (3) 21 (3) 14 (2) 14 (2) 14 (2) 14 (2) 345 (50+) 345 (50+)
Annealed (235) NITRONIC 32 317 (46) 310 (45) 55 (8) 345 (50+) 345 (50+) 207 (30) 21 (3) 345 (50+) 207 (30) 345 (50+)
Annealed (205) NITRONIC 60 345 (50+) 345 (50+) 248 (36) 345 (50+) 345 (50+) 345 (50+) 262 (38) 345 (50+) 345 (50+) 345 (50+)

+Did not gall. Note: Condition and hardness apply to both horizontal and vertical axis.

Unlubricated Galling Resistance of Several Metal Combinations
Couple – (Brinell Hardness) Threshold Galling Stress MPa. (ksi) (Stress at which galling began) Couple – (Brinell Hardness) Threshold Galling Stress MPa (ksi) (Stress at which galling began)
Waukesha 88 (141) vs. Type 303 (180) 345 (50+) Type 201 (202) vs. Type 304 (140) 14 (2)
Waukesha 88 (141) vs. Type 201 (202) 345 (50+) Type 201 (202) vs. 17-4 PH (382) 14 (2)
Waukesha 88 (141) vs. Type 316 (200) 345 (50+) Type 410 (322) vs. Type 420 (4720) 14 (2)
Waukesha 88 (141) vs.17-4PH (405) 345 (50+) Type 304 (140) vs. AISI 1034 (205) 14 (2)
Waukesha 88 (141) vs. 20 Cr-80 Ni (180) 345 (50+) Type 304 (337) vs. Type 304 (337) 14 (2)
Waukesha 88 (141) vs. Type 304 (207) 345 (50+) Type 304 (207) vs. Type 304 (337) 14 (2)
Silicon Bronze (200) vs. Silicon Bronze (200) 28 (4) Duplex 2205 (235) vs. Type 303 (153) 14 (2)
A-286 (270) vs. A-286 (270) 21 (3) Duplex 2205 (235) vs. Type 304 (270) 14 (2)
NITRONIC 60 (205) vs. A-286 (270) 338 (49+) Duplex 2205 (235) vs. Type 316 (150) 14 (2)
NITRONIC 60 (205) vs. 20Cr-80Ni (180) 248 (36) Duplex 2205 (235) vs. Type 416 (342) 14 (2)
NITRONIC 60 (205) vs. Ti-6AI-4V (332) 345 (50+) Duplex 2205 (235) vs. 17-4 PH (415) 14 (2)
AISI4337 (484) vs. AISI 4337 (415) 14 (2) Duplex 2205 (235) vs. NITRONIC 60 (210) 207 (30)
AISI 1034 (415) vs. AISI 1034 (415) 14 (2) IN 625 (215) vs. Type 303 (153) 14 (2)
NITRONIC 60 (205) vs. AISI 4337 (448) 345 (50+) IN 625 (215) vs. Type 304 (270) 14 (2)
NITRONIC 60 (205) vs. Stellite 6B (415) 345 (50+) IN 625 (215) vs. Type 316 (161) 14 (2)
NITRONIC 32 (234) vs. AISI 1034 (205) 14 (2) IN 625 (215) vs. 17-4 PH (415) 14 (2)
NITRONIC 32 (231) vs. Type 201 (202) 345 (50+) IN 625 (215) vs. NITRONIC 60 (210) 227 (33)
NITRONIC 60 (205) vs. 17-4 PH (322) 345 (50+) Stellite 21 (270) vs. Type 316 (161) 14 (2)
NITRONIC 60 (205) vs. NITRONIC 50 (205) 345 (50+) Stellite 21 (270) vs. NITRONIC 50 (210) 14 (2)
NITRONIC 60 (205) vs. PH 13-8 Mo (297) 345 (50+) Stellite 21 (270) vs. NITRONIC 60 (21O) 297 (43+)
NITRONIC 60 (205) vs. PH 13-8 Mo (437) 345 (50+) K-500 Monel (321) vs. Type 304 (270) 14 (2)
NITRONIC 60 (205) vs. 15-5 PH (393) 345 (50+) K-500 Monel (321) vs. Type 316 (161) 14 (2)
NITRONIC 60 (205) vs. 15-5 PH (283) 345 (50+) K-500 Monel (321) vs. 17-4 PH (415) 14 (2)
NITRONIC 60 (205) vs. 17-7 PH (404) 345 (50+) K-500 Monel (321) vs. NITRONIC 50 (245) 14 (2)
NITRONIC 60 (205) vs. NITRONIC 40 (185) 345 (50+) K-500 Monel (321) vs. NITRONIC 60 (210) 117 (17)
NITRONIC 60 (205) vs. Type 410 (240) 248 (36) NITRONIC 60 (210) vs. Tribaloy 700 (437) 310 (45+)
NITRONIC 60 (205) vs. Type 420 (472) 345 (50+) Stellite 6B (450) vs. Type 316 (61) 55 (8)
NITRONIC 60 (210) vs. Type 201 (202) 317 (46+) Stellite 6B (450) vs. Type 304 (150) 324 (47+)
NITRONIC 60 (210) vs. AISI 4130 (234) 234 (34) Stellite 6B (450) vs. NITRONIC 60 (210) 345 (50+)
NITRONIC 60 (205) vs. Type 301 (169) 345 (50+) Type 410 (210) vs. Type 410 (210) 14 (2)
Type 440C (600) vs. Type 420 (472) 21 (3) Type 410 (363) vs. Type 410 (363) 14 (2)
Type 201 (202) vs. Type 201 (202) 137 (20) Type 410 (210) vs. Type 410 (363) 14 (2)
NITRONIC 60 (205) vs. Cr plated Type 304 345 (50+) 17-4 PH (H 1150D) (313) vs. 17-4 PH (H 1150D) (313) 14 (2)
NITRONIC 60 (205) vs. Cr plated 15-5PH (H 1150D) 345 (50+)
NITRONIC 60 (205) vs. Inconel 718 (306) 345 (50+) Type 410 (210) vs. 17-4 PH (H 1150D) (313) 14 (2)
NITRONIC 60 (205) vs. CP Titanium (185) 324 (47+)
NITRONIC 60 (205) vs. Ni Resist Type 2 (145) 345 (50+) NITRONIC 60 (210) vs. 17-4 PH (H 1150D) (313) 145 (21)
NITRONIC 60 (205) vs. Stellite 21 (295) 296 (43+)

+ Did not gall.

Cryogenic Galling Resistance
Couple – (Brinell Hardness) Threshold Galling Stress MPa (ksi) (Stress at which galling began)
NITRONIC 60 (189) vs. NITRONIC 60 (189) 345 (50+)
NITRONIC 60 (189) vs. Type 410 (400) 345 (50+)
NITRONIC 60 (189) vs. 17-4 PH (415) 345 (50+)
NITRONIC 60 (189) vs. Type 304 (178) 345 (50+)
17-4 PH (404) vs. Type 410 (400) 48 (7)
Type 304 (178) vs. Type 410 (400) 152 (22)

+Did not gall.   *Tested in liquid nitrogen. -196 °C (-320 °F)

Wear Resistance

Data shown in the following tables were developed under these test conditions: Taber Met-Abrader machine, 12.7 mm (0.5 in.) crossed 90° cylinders, no lubricant, 71 N (16 lbs) load, 105 RPM (and 415 RPM where noted), room temperature, 120 grit surface finish, 10,000 cycles, degreased in acetone, duplicate tests, weight loss corrected for density differences.

Wear Compatibility of Self-Mated Austenitic Stainless Steels
Alloy Rockwell Hardness Weight Loss, mg/1000 cycles
@ 105 RPM @ 415 RPM
NITRONIC 60 B95 2.79 1.58
Type 201 B90 4.95 4.68
Type 301 B90 5.47 5.70
Type 302B B90 5.47 4.62
NITRONIC 32 B95 7.39 3.08
NITRONIC 33 B94 7.95 4.35
NITRONIC 40 B93 8.94 5.35
NITRONIC 50 B99 9.95 4.60
Type 310 B72 10.40 6.49
Type 316 B91 12.50 7.32
Type 304 B99 12.77 7.59
Duplex 2205 B99 17.40 4.02
21-4N C33 21.38 10.02
Type 303 B98 386.10 50.47

 

Wear Compatibility of Self-Mated Martensitic and Ferritic Stainless Steel
Alloy Rockwell Hardness Weight Loss, mg/1000 cycles
@ 105 RPM @ 415 RPM
Type 440C C57 3.81 0.54
PH 13-8 Mo C47 38.11 5.41
17-4 PH C43 52.80 12.13
Type 416 C39 58.14 99.78
PH 13-8 Mo C32.5 60.15 10.95
Type 430 (5000 cycles) B94 120.00 69.93
Type 440C C35 153.01 163.35
Type 420 (5000 cycles) C46 169.74 12.73
Type 431 (5000 cycles) C42 181.48 10.35
Type 410 C40 192.79 22.50

 

Wear Compatibility of Self-Mated Cast Alloys and Coatings
Alloy Rockwell Hardness Weight Loss, mg/1000 cycles
@ 105 RPM @ 415 RPM
Ni-Hard C44.5 0.13 0.39
Tufftrided PH C70 0.33
White Cast Iron C60 0.38 0.20
Tribaloy 800 C54.5 0.65 0.37
Tribaloy 700 C45 0.93 0.50
Borided AISI 1040 C70 1.01 2.08
Colmonoy 6 C56 1.06 0.58
Stellite 31 C24 1.65 6.04
Chrome Plate 1.66 1.28
Nitrided PH 1.11
Ni-Resist Type 1 B80 4.45 508.52
Ni-Resist Type 2 B80 8.80 522.32
Waukesha 88 B81 7.09 6.10
Inconel C25 19.67 2.67
HN B78 21.75 2.94
CA6-NM C26 130.41 55.60

 

Wear Compatibility of Self-Mated Various Wrought Alloys
Alloy Rockwell Hardness Weight Loss, mg/1000 cycles
@ 105 RPM @ 415 RPM
D2 Tool Steel C61 0.46 0.34
AISI 4337 C52 0.73 0.48
Stellite 6B C48 1.00 1.27
Hadfield Mn Steel B95 1.25 0.41
Haynes 25 C28 1.75 23.52
Aluminum Bronze (10.5AI) B87 2.21 1.52
Be-Cu C40 2.97 2.56
Silicon Bronze B93 5.57 4.18
Ti-6AI-4V C36 7.64 4.49
Inconel 718 C38 9.44 2.85
AISI 4130 C47 9.44 6.80
Waspaloy C36 11.25 3.28
Inconel 625 B96 11.34 3.49
Hastelloy C B95.5 13.88 4.50
20 Cb-3 B99 16.47 7.22
6061-T6  Aluminum B59 17.06 21.15
A-226 C33 17.07 7.62
Inconel X750 C36 18.70 5.56
H13 Tool Steel C45 20.74 10.15
k-500 Monel C34 30.65 23.87
20 Cr-80 Ni B87 44.01 13.92
Copper B49 57.01 29.25
Leaded Brass B72 127.91 67.12
AISI 1034 B95 134.05* 106.33
Nickel B40 209.72 110.25
Astralloy V C46 213.58 8.22
AISI 4130 C32 257.59 262.64

 

Wear Compatibility of Stainless Steel Couples
Alloy vs. Weight Loss mg/1000 Cycles
Type 304 Type 316 17-4 PH NITRONIC 32 NITRONIC 50 NITRONIC 60 Type 440C
Rockwell Hardness B99 B91 C43 B95 B99 B95 C57
Type 304 12.8
Type 316 10.5 12.5
17-4 PH 24.7 18.5 52.8
NITRONIC 32 8.4 9.4 17.2 7.4
NITRONIC 50 9.0 9.5 15.7 8.3 10.0
NITRONIC 60 6.0 4.3 5.4 3.2 3.5 2.8
TYPE 440C 4.1 3.9 11.7 3.1 4.3 2.4 3.8

 

Wear Compatibility of Corrosion-Resistant Couples
Alloy vs. Weight Loss mg/1000 cycles
Silicon  Bronze Chrome  Plate Stellite  6B
Rockwell Hardness B93 (-) C48
Type 304 (B99) 2.1 2.3 3.1
17-4 PH (C43) 2.0 3.3 3.8
NITRONIC 32 (B95) 2.3 2.5 2.0
NITRONIC 60 (B95) 2.2 2.1 1.9
Silicon Bronze 5.6 1.3 1.9
Chrome Plate 1.7 0.33
Stellite 6B 1.00

 

Wear Compatibility of Nitronic 60, 17-4 PH and Stellite
Alloy Rockwell Hardness Weight Loss mg/1000 cycles
17-4 PH (C43) NITRONIC 60 (B95) Stellite 6B (C48)
Type 304 B99 24.7 6.0 3.1
Type 316 B91 18.5 4.3 5.5
17-4 PH C31.5 66.1 4.9 2.7
17-4 PH C43 52.8 5.4 3.8
NITRONIC 32 B95 17.2 3.2 2.0
NITRONIC 50 B99 15.7 3.5 2.9
NITRONIC 60 B95 5.4 2.8 1.9
Stellite 6B C48 3.8 1.9 1.0
Chrome Plate 3.3 2.1 0.3
Silicon Bronze B93 2.0 2.2 1.9
K 500 Monel C34 34.1 22.9 18.8
Type 416 C24 5.5 43.0
Type 431 C32 3.0 1.0
Waspaloy C36 3.1 2.4
Inconel 718 C38 3.1 2.7
Inconel X-750 C36 5.5 8.0

 

Comparative Sliding Compatibility of Nitronic 60 Stainless Steel and Waukesha 88 in Contact with Stainless Steels
Alloy vs. Weight Loss mg/1000 cycles
NITRONIC 60 Waukesha 88
Rockwell Hardness B95 B81
NITRONIC 60 (B95) 2.79 8.44
Waukesha 88 (B81) 8.44 7.09
Type 304 (B99) 6.00 8.14
Type 316 (B91) 4.29 9.55
Type 440C (C57) 2.36 6.90
17-4 PH (C43) 5.46 9.12
NITRONIC 32 (B95) 3.18 7.57

 

Wear Type 410 and 17-4 PH in Nace – Approved Conditions for Sour Well Service
Alloy Couple,  (Rockwell Hardness) Weight Loss mg/1000 cycles
@ 105 RPM @ 415 RPM
Type 410 (B95) – Self 261.07 115.69
17-4 PH (C34, Condition H 1150D) – Self 75.42 26.80
17-4 PH (C34, Condition H 1150D) – Type 410 (B95) 104.80 58.94
17-4 PH (C34, Condition H 1150D) – NITRONIC 60 (B95) 4.14 4.34
Type 410 (B95) – NITRONIC 60 (B95) 3.81 5.19

 

Wear Compatability of Miscellaneous Dissimilar Couples
Couple,  (Rockwell Hardness) Couple Weight Loss, (mg/1000 cycles)
NITRONIC 60 (B95) vs. Type 431 (C32) 3.01
NITRONIC 60 (B95) vs. Type 431 (C42) 3.01
NITRONIC 60 (B95) vs. Type 416 (C39) 16.50
NITRONIC 60 (B95) vs. 17-4 PH (C31.5) 4.91
NITRONIC 60 (B95) vs. Type 301 (B90) 2.74
NITRONIC 60 (B95) vs. Type 303 (B98) 144.30
NITRONIC 60 (B95) vs. K-500 (C34) 22.90
NITRONIC 60 (B95) vs. A-286 (C33) 5.86
NITRONIC 60 (B95) vs. AISI 4337 (C52) 2.50
NITRONIC 60 (B95) vs. D2 Tool Steel (C61) 1.94
NITRONIC 60 (B95) vs. Ni-Hard (C44.5) 2.19
NITRONIC 60 (B95) vs. Tufftrided PH 2.72
NITRONIC 60 (B95) vs. Borided AISI 1040 2.53
NITRONIC 60 (B95) vs. Tribaloy 700 (C45) 2.08
NITRONIC 60 (B95) vs. Tribaloy 800 (C54.5) 1.34
NITRONIC 60 (B95) vs. Haynes 25 (C28) 2.10
NITRONIC 60 (B95) vs. PH 13-8 Mo (C44) 3.74
NITRONIC 60 (B95) vs. AISI 1040 (B95) 4.09
NITRONIC 60 (B95) vs. Inconel 625 (B99) 3.20
17-4 PH (C43) vs. Type 440C (C34) 113.60
17-4 PH (C43) vs. A-286 (C33) 15.50
17-4 PH (C43) vs. K-500 (C34) 34.10
17-4 PH (C43) vs. D2 Tool Steel (C61) 5.69
17-4 PH (C43) vs. Ni-Hard (C44.5) 4.58
17-4 PH (C43) vs. Haynes 25 (C28) 1.46
17-4 PH (C43) vs. Ti-6AI-4V (C36) 11.70
17-4 PH (C43) vs. Borided AISI 1040 11.70
17-4 PH (C43) vs. Inconel 625 (B99) 8.84
X 750 (C36) vs. A-286 (C33) 16.70
X 750 (C36) vs. Haynes 25 (C28) 2.10
X 750 (C36) vs. Ti-6AI-4V (C36) 7.85
Type 304 (B99) vs. D2 Tool Steel (C61) 3.33
Type 316 (B91) vs. K-500 (C34) 33.80
NITRONIC 32 (B95) vs. Type 416 (C39) 34.80
NITRONIC 32 (B95) vs. Type 431 (C42) 4.86
NITRONIC 50 (B99) vs. Tufftrided PH 7.01
Type 416 (C39) vs. Be-Cu (C40) 4.12
Type 431 (C32) vs. Stellite 6B (C48) 2.08
Type 431 (C42) vs. Stellite 6B (C48) 0.66

 

Effect of Hardness on the Wear Resistance of Austenitic Stainless Steels
Self-Mated Series

Weight Loss of Test Couple (mg/1000 cycles)

Type 316L NITRONIC 60 NITRONIC 50
HRB 72 vs. HRB 72 11.58 HRB 92 vs. HRB 92 3.09 HRB 99 vs. HRB 99 9.95
HRB 76 vs. HRB 76 11.86 HRC 29 vs. HRC 29 3.12 HRC 28 vs. HRC 28 9.37
HRC 24 vs. HRC 24 12.54 HRB 92 vs. HRC 29 3.40 HRC 38 vs. HRC 38 9.26
HRC 29 vs. HRC 29 12.51 HRB 99 vs. HRC 38 9.31
HRC 30.5 vs. HRC 30.5 12.52
HRB 72 vs. HRC 30.5 12.06
HRB 76 vs. HRC 29 12.34

 

Effect of Hardness on the Wear Resistance of Austenitic Stainless Steels
Dissimilar Couple Series

Weight Loss of Test Couple (mg/1000 cycles)

Type 316L NITRONIC 50 NITRONIC 60
HRB 76 vs. Type 304L 11.75 HRB 99 vs. Type 304L 9.00 HRB 92 vs. Type 304L 5.04
HRC 24 vs. Type 304L 11.18 HRC 28 vs. Type 304L 9.24 HRC 29 vs. Type 304L 5.81
HRC 29 vs. Type 304L 10.61 HRC 38 vs. Type 304L 10.08
HRB 76 vs. 17-4 PH 17.95 HRB 99 vs.17-4 PH 15.69 HRB 92 vs. 17-4 PH 4.11
HRC 24 vs. 17-4 PH 16.22 HRC 28 vs. 17-4 PH 12.56 HRC 29 vs. 17-4 PH 4.29
HRC 29 vs. 17-4 PH 17.46 HRC 38 vs. 17-4 PH 13.25
HRB 72 vs. Stellite 6B 5.77 HRB 99 vs. Stellite 6B 2.25 HRB 92 vs. Stellite 6B 1.87
HRB 76 vs. Stellite 6B 5.55 HRC 28 vs. Stellite 6B 2.94 HRC 29 vs. Stellite 6B 1.98
HRC 24 vs. Stellite 6B 5.53 HRC 38 vs. Stellite 6B 2.33
HRC 29 vs. Stellite 6B 5.74

 

Effect of Surface Finish on the Wear Resistance of Stainless Steels
Self-Mated Test

Weight Loss of Couple (mg/1000 cycles)

Emery Grit Surface Finish µin (AA) NITRONIC 60 17-4 PH Type 430 F*
60 70 2.9 82.0 380
120 21 3.2 81.4 411
240 13 2.7 86.7 403
0 5/6 3.1 84.2 412
3/0 4/5 3.1 83.2 390
electropolished 2.9 86.0 416

 

Effect of Load on the Wear of Nitronic 60 and Stellite 6B Taber Met-Abrader 12.7 mm (0.5 in.) Diameter Crossed Cylinders, Self-Mated, 27.6 cm/sec. (415 RPM), 10 000 Cycles, Dry, in Air

EFFECT OF LOAD ON THE WEAR OF NITRONIC 60 AND STELLITE 6B TABER MET-ABRADER 12.7 mm (0.5 in.) DIAMETER CROSSED CYLINDERS, SELF-MATED, 27.6 cm/sec. (415 RPM), 10 000 CYCLES, DRY, IN AIR

Effect of Speed on Wear, 71 N (16 lbs), 10 000 Cycles, Self-Mated 12.7 mm (0.5 in.) Crossed Cylinders Corrected for Density Differences

EFFECT OF SPEED ON WEAR, 71 N (16 lbs), 10 000 CYCLES, SELF-MATED 12.7 mm (0.5 in.) CROSSED CYLINDERS CORRECTED FOR DENSITY DIFFERENCES

Effect of Distance on Wear Resistance of Nitronic 60 Compared to Nickel and Cobalt Alloys

EFFECT OF DISTANCE ON WEAR RESISTANCE OF ARMCO NITRONIC 60 COMPARED TO NICKEL AND COBALT ALLOYS

Wear of Nitronic 60 and Stellite 31

WEAR OF ARMCO NITRONIC 60 AND STELLITE 31

 

High Temperature Wear Resistance of Nitronic 60
Alloy Atmosphere Volume Loss, mm3 Wear index
NITRONIC 60 Helium 6.94 38.3
NITRONIC 60 Air + Steam# 8.74 30.4
NITRONIC 60 Air + Steam 10.57 25.2
Stellite 6B Air + Steam 28.00 9.5
Type 304 Air + Steam 106.00 2.5
Mild Steel Air + Steam 266.00 1.0 (base)

*Test Conditions: Self-mated thrust washers, 260 °C (500 °F), 500 rpm, 489 N (110 Ibs.), 4000 cycles. Tested at the U.S. Bureau of Mines. #Preoxidized – 538 °C (1000 °F), 3 hours in air.

Effect of Temperature on Wear

EFFECT OF TEMPERATURE ON WEAR

* Test conditions – 71 N (16 Ibs.) load, 20 000 rev., 415 RPM, self-mated, stationary specimen only heated to test temperature.

 

Relative Cavitation Erosion Rate
Series 1* NITRONIC 60
1.00
Type 308L
1.89
Al Bronze
3.00
Type 304
3.67
CA-6NM
6.80
AISI 1020
15.44
Series 2* Stellite 6B
0.67
NITRONIC 6
01.00
Duplex 225
3.33
Duplex 2205
4.33
Type 316L, Type 317L
5.67
Series 3# NITRONIC 60
1.00
Type 410
1.70
17-4 PH
1.90
Type 316
3.70
CA – 6NM
6.60
Series 4 Weld Overlays# Stellite 6B
0.76
NITRONIC 60
1.00
Type 308L
3.38
Type 316
4.62
Al Bronze
12.4

* Laboratory Ultrasonic Cibration Test Method 20 kHz, 27 °C (80 °F) H2 0, 0.05 mm (0.002 in.) amplitude. #High-pressure jet impingement apparatus. All reported tests were conducted by either pump manufacturers or hydroelectric equipment end users.

Abrasion Resistance of Corrosion-Resistant Alloys Mated with AL2O3#
Alloy Rockwell Hardness Alloy Wear,  mm3 Al2O3 Wear, mm3 Total,  mm3
Speed 105 rpm
Tribaloy 700 C45 0.92 NIL 0.92
Colmonoy 6 C56 1.10 0.05 1.15
Stellite 6B C48 1.63 0.18 1.81
Type 440C C56 2.10 0.30 2.40
NITRONIC 60 B95 3.54 0.58 4.12
Type 301 B90 4.66 0.83 5.49
NITRONIC 50 C33 4.49 1.53 6.02
NITRONIC 32 B94 5.76 1.40 7.16
Type 304 B79 6.76 1.68 8.44
Type 310 B72 8.84 2.85 11.69
17-4 PH C43 24.13 3.63 27.76
Speed 415 rpm
Type 440C C56 0.73 0.15 0.88
Colmonoy 6 C56 0.84 0.10 0.94
NITRONIC 60 B95 0.98 0.28 1.26
17-4 PH C43 1.60 0.33 2.13
Stellite 6B C48 2.10 0.03 2.13
NITRONIC 60* B95 2.68 0.04 2.72
Type 304 B79 5.06 1.68 6.74
Stellite 6B* C48 8.46 NIL 8.46

*40,000 Cycles   #Test Conditions: Taber Met-Abrader machine, 12.7 mm (0.5 in.) diameter specimen mated with 6.4 mm (0.25 in.) f lat Al2 O3 in fixed position, 71 N (16 lbs), room temperature, 10 000 cycles, dry, in air.

Abrasion Resistance of Corrosion Resistant Alloys Mated with Tungsten Carbide
Alloy Rockwell  Hardness Alloy Wear mm3 *
10 000 cycles @ 105 RPM 40 000 cycles @ 415 RPM
D2 Tool Steel C61 0.09 0.35
Ni-Hard C45 0.19 0.32
Hadfield Mn B95 0.67 0.96
Colmonoy 6 C56 1.08 3.12
Boride C75 1.16 2.88
Stellite 6B C48 1.35 4.94
Tribaloy 700 C45 1.43 3.90
Type 440C C56 1.50 1.51
Si Bronze B93 1.65 5.89
Haynes 25 C28 2.00 15.39
NITRONIC 60 B95 2.82 9.04
AI Bronze B97 3.17 8.39
Type 301 B90 3.80 16.03
NITRONIC 32 B94 4.20 17.39
Type 304 B79 6.18 52.80
Type316 B74 7.70 34.06
NITRONIC 50 B99 8.72 30.18
Type 431 C42 9.84 6.16
17-4 PH C43 9.92 22.37
A-286 C33 13.92 36.68
Type 310 B72 15.26 39.09
Type 416 C39 59.63 285.61
X750 C36 51.60

Test Conditions Taber Met-Abrader machine. 12.7 mm (0.5 in.) diameter crossed cylinders. 71 N (16 lbs) room temperature duplicates. Tungsten Carbide (WC) In fixed position, dry, in air. *Wear to WC was almost nil in all cases and was not monitored.

Abrasion Resistance of Corrosion Resistant Alloys Mated to Silicon Carbide
Alloy Rockwell  Hardness Alloy Wear mm3 10 000 cycles
@ 105 RPM @ 415 RPM
Type 440C C56 1.21 0.32
Colmonoy 6 C56 2.91 2.17
Stellite 6B C41 3.46 3.45
Al Bronze B87 7.00 5.19
NITRONIC 32 B94 7.08 6.75
NITRONIC 60 B95 7.26 5.42
DUPLEX 2205 19.02 6.13
NITRONIC 50 B99 21.15 9.03
Type 316 B76 22.41 15.59
Type 304 B79 25.33 13.48
Hastelloy C B96 33.52 15.01
Type 310 B72 37.24 18.12
20 Cb-3 B99 44.82 17.51
INCONEL 600 B90 55.60 29.93
CA 6-NM C26 66.04 118.72
17-4 PH C43 104.22 37.94

Only wear to the rotating alloy was measured.

Corrosion Resistance

Corrosion Properties
Media Annealed NITRONIC 60, mm/y (in./y) Annealed Type 304, mm/y (in./y) Annealed Type 316, mm/y (in./y) ARMCO 17-4 PH (H 925), mm/y (in./y)
65% Boiling HNO3 1.52 (0.060) 0.30 (0.012) 0.30 (0.012) 3.35 (0.132)
1% HCL @ 35 °C 0.25 (0.010) 1.35 (0.053) 0.61 (0.024)
2% H2SO4 @ 80 °C 1.14 (0.045) 6.17 (0.243) 0.28 (0.011) 0.53 (0.021)
5% H2SO4 @ 80 °C 13.23 (0.521) 33.02 (1.300) 1.52 (0.060)
5% Formic Acid @ 80 °C <0.03 (<0.001) 2.06 (0.081) <0.03 (<0.001) 0.03 (0.001)
33% Boiling Acetic Acid 0.28 (0.011) 3.84 (0.151) <0.03 (<0.001) 0.15 (0.006)
70% Hydrazine 76 °C (168 °F) 72 Hours No Reaction – PASSED
5% Salt Spray @ 35 °C (95 °F) (120 Hours) NITRONIC 60 exhibited resistance to general rusting comparable to Type 304

Corrosion rates are mm per year (inch per year).

Chloride Pitting Resistance
Media Annealed NITRONIC 60, g/cm2 (g/in.2) Annealed Type 304, g/cm2 (g/in.2) Annealed Type 316, g/cm2 (g/in.2) ARMCO 17-4 PH (H 925), g/cm2 (g/in.2)
10% FeCl3 @ RT (pitting test) 50 hours 0.001 (0.004) No Pits 0.010 (0.065) Pitted 0.002 (0.011) Pitted 0.024 (0.154) Pitted
10% FeCl3 @ RT with (artificial crevices) 50 hours 0.004 (0.024) Slight 0.043 (0.278) Heavy 0.029 (0.186) Heavy

 

Stress Corrosion Resistance (Boiling 42% MgCl2 – 4 Notch Tension Specimens)
Alloy Hours to Failure at Various Stress Levels
138 MPa (20 ksi) 172 MPa (25 ksi) 207 MPa (30 ksi) 241 MPa (35 ksi) 276 MPa (40 ksi)
NITRONIC 60 (Number of Tests) 192 (8) 32.6 (8) 47 (2) 2.8 (1) 1.8 (6)
Type 304 (Multiple Tests) 2.3 1.9 1.5 1.2 1.0
Type 316 8 7 6 4.5 4

 

Sulfide Stress Cracking Resistance
17-4 PH (H 1150-M) NITRONIC 60 (Annealed)
0.2% YS, MPa (ksi) Stress Applied Expressed as a % YS Time to Failure Hours 0.2 % YS, MPa (ksi) Stress Applied Expressed as a % YS Time to Failure Hours
749 (108.7) 90.6 8.9 381 (55.3) 110 720 (NF)
749 (108.7) 85.0 19.5 405 (58.7) 110 720 (NF)
749 (108.7) 81.6 21.9 365 (52.8) 100 720 (NF)
749 (108.7) 72.8 26.7 374 (54.3) 100 720 (NF)
749 (108.7) 60.7 50.1 385 (55.3) 100 720 (NF)
749 (108.7) 44.9 104.5 405 (58.7) 100 720 (NF)
762 (110.5) 34.6 214.6 405 (58.7) 85 720 (NF)
762 (110.5) 28.0 572.1 Passed NACE requirements of 720 hours stressed at
762 (110.5) 22.0 720 (NF) 100% of 0.2% YS without failure

NF = No Failure

Sulfidation Resistance
Test Temperature, °C (°F) Weight Loss, mg/cm2 (mg/in.2)
NITRONIC 60 Type 309
870 (1600) 0.217 (1.40) 0.209 (1.35)
930 (1700) 0.332 (2.14) 580.1 (3745)
980 (1800) 471.201 (3040) Dissolved

Conditions: Duplicate wire specimens placed in mixture of 90% Na2 SO4 10% KCI for 1 hr at each temperature.

Carburization Resistance

Alloy UTS, MPa (ksi) 0.2% YS, MPa (ksi) Elongation %  in 4D0 Reduction of Area Bend
1.5T
NITRONIC 60 Unexposed
Exposed
800 (116.0)
630  (91.5)
341 (49.5)
400 (58.0)
74
19
66
22
180°
100°
Type 316L Unexposed
Exposed
   524  (76.0)
448  (65.0)
207 (30.0)
248 (36.0)
68
24
74
21
180°
110°
Type 309 Unexposed
Exposed
   683  (99.0)
589  (85.5)
283 (41.0)
313 (45.5)
54
14
65
12
180°
75°

Conditions: Duplicate tests exposed at 982 °C (1800 °F) for 2 hrs in packed 90% graphite – 10% sodium carbonate.

Oxidation Resistance

Static Oxidation Resistance
Test Temperature, °C (°F) Weight Loss, mg/cm2
RA 333 Type 310 NITRONIC 60 Type 304
1149 (2100) Before Descaling
After Descaling
3.1
12.2
4.6
15.7
16.5
23.2
1220
1284
1204 (2200) Before Descaling
After Descaling
10.1
16.7
10.1
20.6
26.1
35.4
2260
2265

240 hours at temperature

Cyclic Oxidation Resistance
Cycle Alloy Weight Change mg/cm2 at number of cycles indicated
134 cycles 275 cycles 467 cycles 200 cycles 304 cycles 400 cycles
871 – 927 °C
(1600 – 1700 °F),
25 minutes heat,
5 minutes cool,
duplicate tests
RA 330 0.53 0.76 0.99
Type 310 0.62 1.04 -3.52
Type 309 0.47 -6.45 -15.6
NITRONIC 60 0.23 -10.7 -26.0
Type 316 -73.3 -150 -200
Weight Loss, mg/cm2
1038 °C (1900 °F),
30 minutes heat,
30 minutes cool
Type 446 1.47 1.72 1.97
Type 310 2.70 15.9 17.2
Type 309 22.5 26.3 33.7
NITRONIC 60 43.0 60.4 74.8
Type 316 93.0 135.3 178.3

 

Physical Properties

Physical Properties
Density at 24 °C (75 °F) 7.622 (g/cm3)
Electrical Resistivity 98.2 µΩ•cm
Modulus of Elasticity 180 GPa (26.26 Mpsi)
Poisson’s Ratio 0.298

 

Mean Coefficient Of Thermal Expansion
Temperature °C (°F) µm/m/°C (in./in./°F)
24 – 93 (75 – 200) 15.8 (8.8 x 10-6)
24 – 204 (75 – 400) 16.6 (9.2 x 10-6)
24 – 316 (75 – 600) 17.3 (9.6 x 10-6)
24 – 427 (75 – 800) 17.6 (9.8 x 10-6)
24 – 538 (75 – 1000) 18.0 (10.0 x 10-6)
24 – 649 (75 – 1200) 18.5 (10.3 x 10-6)
24 – 760 (75 – 1400) 18.9 (10.5 x 10-6)
24 – 871 (75 – 1600) 19.3 (10.7 x 10-6)
24 – 982 (75 – 1800) 19.8 (11.0 x 10-6)

 

Magnetic Permeability
Condition Magnetic Permeability (µ)
Annealed 1.003
25% Cold Drawn 1.004
50% Cold Drawn 1.007
75% Cold Drawn 1.010

 

Dynamic Coefficient Of Friction
Alloy Dynamic Coefficient of Friction
Test Stress Level, N/mm2
0.8 5.6 14.0 28.0 56.0 112.0
NITRONIC 60 0.50 0.35 0.38 0.44 0.44 0.44
Stellite 6B 0.30 0.60 0.63
NITRONIC 32 0.43 0.53 0.65 0.58

Tested in water at 20 °C, self-mated.

Machinability

Machinability
AISI B1112 Type 304 NITRONIC 60
100% 45% 23%

25.4 mm (1 in.) – annealed-RB 95. Five-hour form tool life using high-speed tools.

Recommended Machining Rates For Nitronic 60
Machining Operation Cutting Rates, Depth/Rev Feed Cutting Rates, SFM
Single Point Turning Carbide Tools
Roughing 0.150 – 0.015 197 – 328
Finishing 0.025 – 0.007 203 – 394
Drilling
0.25 in. diameter hole 0.004 60
0.50 in. diameter hole 0.007 60
0.75 in. diameter hole 0.010 60
Reaming*
0.25 in. diameter hole 0.004 100
0.50 in. diameter hole 0.007 100
0.75 in. diameter hole 0.010 100
Side and Slot Milling
Roughing 0.250 – 0.007 125
Finishing 0.050 – 0.009 140

SFM = Surface Foot per Minute

Welding

Comparative Properties Of Base Metal Vs Weld Metal
UTS,  MPa (ksi) 0.2% YS,  MPa (ksi) Elongation %  in 4D0 Red. of  Area % Rockwell Hardness Impact Chary V-Notch J (ftlbs) Galling Stress NITRONIC 60 vs NITRONIC 60 MPa (ksi)
As-Welded Weld Metal (by Gas Metal- Arc welding) 848 (123) 586 (85) 19 22 C25 Room Temperature 73 (54) 276 (40)
-196 °C (-320 °F) 15 (11)
Annealed Base Metal 710 (103) 414 (60) 64 74 B95 Room Temperature 325 (240+) 345 (50+)
-196 °C (-320 °F) 195 (144)

+ Did not gall.

Intergranular Corrosion Resistance Of Nitronic 60 Weld Overlay On Type 304
Condition Corrosion Rate,  mm/year (in./month)
As-deposited 0.49 (0.0016)
927 °C (1700 °F) – 1 hr – Water Quenched (stress relief) 0.61 (0.0020)
927 °C (1700 °F) – 1hr – Air Cooled (stress relief) 1.92 (0.0063)

 

NITRONIC 60 Galling Block, 2 Layers of NITRONIC 60 on Type 304, GMAW Process
Mating Alloy 17-4 PH Type 316 PH 13-8 Mo Type 304 Type 440C Type 410 Type 316
Contact Stress MPa (ksi) 282 (40.8)
OK
276 (40.0)
Galled
282 (40.8)
OK
260 (37.7)
OK
392 (56.9)
OK
402 (58.3)
OK
236 (34.3)
Scored

 

NITRONIC 60 Galling Block, 2 Layers of NITRONIC 60 on Carbon steel, Plasma Transferred Arc Process
Mating Alloy 17-4 PH 17-4 PH Type 416 Type 416 Stellite 6B
Contact Stress MPa (ksi) 247 (35.8)
OK
365 (52.7)
OK
247 (35.8)
OK
319 (46.3)
OK
329 (47.8)
OK

Forging

The following practice should be followed when forging NITRONIC 60 stainless sections 330 mm (13 in.) or smaller:
1) Charge in furnace below 816 °C (1500 °F).
2) Raise to 1093 °C (2000 °F), equalize.
3) Raise to 1177 °C (2150 °F), equalize and forge.
4) Reheat as necessary.

Casting

Typical Elevated Temperature Properties* Cast Nitronic 60 (Cf10s Mnn) Annealed
Test Temperature,  °C (°F) UTS,  MPa (ksi) 0.2% YS,  MPa (ksi) Elongation %  in 4D0 Reduction  of Area %
24 (75) 662 (96) 324 (47) 54 55
93  (200) 586 (85) 255 (37) 61 61
204 (400) 496 (72) 193 (28) 62 64
316  (600) 462 (67) 165 (24) 60 60
427  (800) 434 (63) 159 (23) 58 64
538 (1000) 421 (61) 159 (23) 57 64
649 (1200) 379 (55) 159 (23) 50 57

 

Stress Rupture Strength* Cast Nitronic 60 (Annealed)
Test Temperature, °C (°F) Stress,  MPa (ksi) Time to Failure,  Hours Elongation %  in 4D0 Reduction  of Area %
649 (1200) 172 (25) 348 32 53
649 (1200) 207 (30) 108 29 48
649 (1200) 241 (35) 34 23 31

 

Typical Room Temperature Mechanical Properties 152 Mm (6 In.) Square Cast Nitronic 60 Stainless Steel
Condition Location UTS,  MPa (ksi) 0.2% YS,  MPa (ksi) Elongation %  in 4D0 Reduction of Area % Rockwell Hardness, B CVN Impact  J (ftlbs)
As-Cast Surface 676 (98) 338 (49) 43 34 91 50 (37)
As-Cast Intermediate 503 (73) 338 (49) 12 15 89 37 (27)
Annealed (Surface) 1093 °C (2000 °F) 696 (101) 331 (48) 62 67 91 220 (162)
Annealed (Intermediate) 1093 °C (2000 °F) 662 (96) 317 (46) 54 56 89

 

Typical Impact Strength Simulated Slow Cool In Mold Study
Temperature,  °C (°F) Charpy V-Notch Impact J, (ftlbs)
22.8 (73) 29.2 (21.5)
15.6 (60) 50.8 (37.5)

Cast 225 mm (9 in.) square x 100 mm (4 in.) thick section, center cooled from 1121 – 191 °C (2050 – 357 °F) in 2 hrs in still air.

Overview of Nitronic 60

Nitronic 60 material distinguishes itself through a blend of high strength, superior corrosion resistance and outstanding wear resistance. This alloy, with its unique composition, is specifically designed to perform where other materials might fail, particularly in environments where friction and metal-to-metal contact are prevalent.

Key Characteristics and Beneficial Qualities

Some of Nitronic 60’s beneficial qualities include:

  • High strength with versatility: Nitronic 60 exhibits yield strength nearly double that of conventional stainless steels such as 304 and 316. This high strength, coupled with its ability to maintain mechanical integrity at elevated temperatures up to 1500°F, makes it a versatile solution across various demanding industries.
  • Superior wear and corrosion resistance: In addition to its strength, Nitronic 60 material offers excellent resistance to wear, oxidation and corrosion. Its performance in corrosive environments is superior to that of many other stainless steels, particularly in resisting pitting, crevice corrosion and stress corrosion cracking.
  • Exceptional galling resistance: The addition of manganese and silicon gives Nitronic 60 material its remarkable resistance to galling, making it a top choice for applications where components are subjected to friction and wear.
  • Cost-effective wear solution: Nitronic 60’s hardness provides a cost-effective alternative to high nickel and cobalt-bearing alloys, offering comparable wear resistance without the associated costs.
  • Non-magnetic properties: Even in severe cold-working conditions, Nitronic 60 maintains its austenitic, non-magnetic structure.

Nitronic 60 Equivalents

While comparable to grades like 304 and 316 stainless steel in corrosion resistance, Nitronic 60 surpasses these in strength and wear resistance, providing a cost-effective alternative to more expensive cobalt and high nickel alloys. Its high-temperature stability further distinguishes it from other stainless steel alloys.

Nitronic 60 Fasteners

Nitronic 60 fasteners are engineered to meet the highest standards of strength and durability required in harsh environments. Nickel Systems offers a range of Nitronic 60 fasteners to meet your specific needs. Our exhaustive selection includes:

  • Bolts and screws: These include hex bolts, cap screws and more.
  • Nuts: Options include finished hex nuts, heavy hex nuts and lock nuts.
  • Studs and rods: Featuring full thread studs, double-end studs and threaded rods.
  • U-bolts: U-bolts provide reliable fastening solutions for structural and mechanical applications.

Applications of Nitronic 60

Nitronic 60’s ability to resist wear, galling and corrosion, even in the most challenging environments, has led to its widespread adoption in applications where other materials would quickly degrade.

The unique properties of Nitronic 60 make it an invaluable material across a diverse range of industries, such as:

  • Chemical processing
  • Aerospace
  • Oil and gas
  • Pulp and paper mills
  • Electronics
Three Blue Hexagons Are Lined Up On A White Background Three Blue Hexagons Are Lined Up On A White Background

Check out our Nitronic 60 Sample Products

 

Hex Head Machine Screw #10 Coarse Thread Nitronic 60 Material

an picture of a nitronic 60 machine screw

 

Three Blue Hexagons Are Lined Up On A White Background Three Blue Hexagons Are Lined Up On A White Background
Three Blue Hexagons Are Lined Up On A White Background Three Blue Hexagons Are Lined Up On A White Background

Industries We Serve

Nickel Systems provides high quality exotic grade materials that hold up in the toughest, most severe heat and corrosive environments. With our large inventory of specialty fasteners in stock, we are always ready to answer the call to serve the most challenging applications.

A Bunch Of Nuts And Bolts On A White Surface
Contact Us Today

Contact Nickel Systems for Your Nitronic 60 Needs

At Nickel Systems, we go beyond providing high-quality Nitronic 60 fasteners. We offer a partnership built on innovation, expertise and a deep understanding of the industries we serve. Our commitment to quality and customer satisfaction means you can rely on us to quickly deliver solutions that enhance the performance and longevity of your projects.

Contact us today to discuss how Nitronic 60 can benefit your application. Whether you need guidance in selecting the right fasteners or have specific requirements, our team of experts is here to help you find the optimal solution.

Contact Us