CORROSION-RESISTANT ALLOYS

A nickel-molybdenum alloy with outstanding resistance to hydrochloric and sulfuric acids in the as-welded condition.

HAYNES International

Contents

Principal Features	3
Chemical Composition	3
Physical Properties	3
Formability	4
Dynamic Modulus of Elasticity	4
Tensile Data	5
Average Corrosion Data	6
Isocorrosion Diagrams	7

Properties Data

Properties Data The properties listed in this booklet are average values based on laboratory tests conducted by the manufacturer. They are indicative only of the results obtained in such tests and should not be considered as guaranteed maximums or minimums. Materials must be tested under actual service conditions to determine their suitability for a particular purpose. All data represent the average of four or less tests unless otherwise noted. The secondary units (metric) used in this booklet are those of the SI system.

PRINCIPAL FEATURES

Outstanding Corrosion Resistance in the As-Welded Condition

HASTELLOY® B-2 alloy is a nickel-base wrought alloy with excellent resistance to hydrochloric acid at all concentrations and temperatures. It also withstands hydrogen chloride, sulfuric, acetic and phosphoric acids. The alloy has excellent resistance to pitting, to stresscorrosion cracking and to knifeline and heat-affected zone attack. It resists the formation of grain-boundary carbide precipitates in the weld heataffected zone, thus making it suitable for most chemical process applications in the aswelded condition.

B-2 alloy is not recommended in the presence of ferric or cupric salts as these salts may cause rapid corrosion failure. Ferric or cupric salts may develop when hydrochloric acid comes in contact with iron or copper.

Therefore, when HASTELLOY B-2 alloy is used in conjunction with iron or copper piping in a system containing hydrochloric acid, the presence of these salts could cause B-2 alloy to fail prematurely.

Exposure of B-2 alloy to temperatures from 1000°F (538°C) to 1600°F (870°C) should be avoided because of a reduction in the ductility of the alloy. In oxidizing gases such as air, B-2 alloy may be used at temperatures up to 1000°F (538°C). In reducing gases or in a vacuum, the alloy may be used from 1600°F (870°C) to substantially higher temperatures.

Limited tests indicate that the corrosion resistance of B-2 alloy in boiling 20 percent hydrochloric acid is not affected by cold reductions of up to 50 percent as compared to tests on the solution heat-treated alloy.

Available in Wrought Form

HASTELLOY B-2 alloy is available in the form of plate, sheet, strip, billet, bar, wire, covered electrodes, pipe and tubing.

Heat-Treatment

Wrought forms of HASTELLOY B-2 alloy are furnished in the solution heat-treated condition unless otherwise specified. B-2 alloy except for bright annealed sheet and strip, is solution heattreated at 1950°F (1066°C) and rapid quenched. Bright annealed products are heat-treated at 2100°F (1149°C) and cooled in hydrogen.

ASME Boiler and Pressure Vessel Code

HASTELLOY B-2 alloy plate, sheet, strip, bar tubing and pipe are covered by ASME specifications SB-333, SB-335, SB-619, SB-622 and SB-626 under UNS number N10665.

NOMINAL CHEMICAL COMPOSITION, PERCENT

Ni ^a	Со	Cr	Мо	Fe	Si	Mn	С
69	1.0**	1.0**	28.0	2.0**	0.10**	1.0**	0.01**

*The undiluted deposited chemical composition of B-2 alloy covered electrodes has 0.02 percent maximum carbon, 0.20 percent maximum silicon, 1.75 percent maximum manganese, 0.03 percent maximum phosphorus and 0.015 percent maximum sulfur.

**Maximum ^a As-balance

AVERAGE PHYSICAL PROPERTIES

Physical Properties	Temp., °F	British Units	Temp., °C	Metric Units
Density	72	0.333 lb./in. ³	22	9.22 g/cm ³
Electrical Resistivity	32 212 392 572 752 932 1112	54.1 microhm-in. 54.3 microhm-in. 54.5 microhm-in. 54.6 microhm-in. 54.8 microhm-in. 55.6 microhm-in. 57.6 microhm-in.	0 100 200 300 400 500 600	1.37 microhm-m 1.38 microhm-m 1.38 microhm-m 1.39 microhm-m 1.39 microhm-m 1.41 microhm-m 1.46 microhm-m

AVERAGE PHYSICAL PROPERTIES

Physical Properties	Temp., °F	British Units	Temp., °C	Metric Units
Mean Coefficient	68-200	5.7 microinches/in°F	20-93	10.3 × 10 ⁻⁶ m/m·K
of Thermal Expansion	68-400	6.0 microinches/in°F	20-204	10.8 × 10 ⁻⁶ m/m·K
Expansion	68-600	6.2 microinches/in°F	20-316	11.2 × 10 ⁻⁶ m/m·K
	68-800	6.4 microinches/in°F	20-427	11.5 × 10 ⁻⁶ m/m·K
	68-1000	6.5 microinches/in°F	20-538	11.7 × 10 ⁻⁶ m/m·K
Thermal	32	77 Btu-in./ft. ² -hr°F	0	11.1 W/m·K
Conductivity	212	85 Btu-in./ft. ² -hr°F	100	12.2 W/m·K
	392	93 Btu-in./ft. ² -hr°F	200	13.4 W/m·K
	572	102 Btu-in./ft. ² -hr°F	300	14.6 W/m·K
	752	111 Btu-in./ft. ² -hr°F	400	16.0 W/m·K
	932	120 Btu-in./ft. ² -hr°F	500	17.3 W/m·K
	1112	130 Btu-in./ft. ² -hr°F	600	18.7 W/m•K
Thermal	32	0.005 in. ² /sec.	0	$3.2 \times 10^{-6} \text{m}^2/\text{s}$
Diffusivity	212	0.005 in. ² /sec.	100	$3.4 \times 10^{-6} \text{m}^{2/\text{s}}$
	392	0.006 in. ² /sec.	200	$3.6 \times 10^{-6} \text{m}^2/\text{s}$
	572	0.006 in. ² /sec.	300	$3.8 \times 10^{-6} \text{m}^2/\text{s}$
	752	0.006 in. ² /sec.	400	$4.0 \times 10^{-6} \text{m}^{2}/\text{s}$
	932	0.007 in. ² /sec.	500	$4.2 \times 10^{-6} \text{m}^2/\text{s}$
	1112	0.007 in. ² /sec.	600	$4.5 \times 10^{-6} \text{m}^2/\text{s}$
Specific Heat	32	0.089 Btu/Ib°F	0	373 J/kg∙K
	212	0.093 Btu/lb°F	100	389 J/kg·K
	392	0.097 Btu/lb°F	200	406 J/kg·K
	572	0.101 Btu/lb°F	300	423 J/kg·K
	752	0.103 Btu/lb°F	400	431 J/kg·K
	932	0.106 Btu/lb°F	500	444 J/kg·K
	1112	0.109 Btu/lb°F	600	456 J/kg∙K

AVERAGE FORMABILITY

Form	Condition	Average Olsen Cup in.	Depth, mm
Sheet, 0.063 in. (1.6mm) thick	Heat-treated at: 1950°F (1066°C), rapid quenched	0.57	14.5

AVERAGE DYNAMIC MODULUS OF ELASTICITY

Form	Condition	Test Temp., °F (°C)	Dynamic Modulus of Elasticity, 10 ⁶ psi (GPa)	
Plate,	Heat-treated at	Room	31.4 (217)	
1/2 in. (12.7mm) thick	1950°F (1066°C), rapid quenched	600 (316)	29.3 (202)	
		800 (427)	28.4 (196)	
		1000 (538)	27.4 (189)	

AVERAGE TENSILE DATA

Form	Condition	Test Temp., °F (°C)	Ultimate Tensile Strength, Ksi (MPa)	Yield Strength at 0.2% offset, Ksi (MPa)	Elongation in 2 in. (50.8mm), percent	Hardness, Rockwell
Sheet, (bright annealed)	Heat-treated at 2100°F (1149°C), hydrogen cooled	Room	132.5 (914)	57.5 (396)	55	B-98
Sheet and Plate,	Heat-treated at	Room*	129.7 (894)	59.8 (412)	61	B-95
0.100 to 0.350 in.	1950°F (1066°C), rapid:guenched	400 (204)*	123.2 (849)	50.8 (350)	59	_
thick	Tapla quenenca	600 (316)*	119.3 (823)	47.5 (328)	60	
		800 (427)*	116.9 (806)	44.9 (310)	60	
Plate, 0.360 to	Heat-treated at 1950°F (1066°C), rapid quenched	Room ¹	130.9 (902)	59.0 (407)	61	B-94
2 in. (9.1 to 51 mm) thick		400 (204) ²	126.2 (871)	52.3 (361)	60	
of finity their		600 (316) ²	121.8 (840)	48.8 (336)	60	
		800 (427) ²	119.3 (823)	46.3 (319)	61	
Plate, 1/4 in. (6.4 mm) thick	As manual gas tungsten arc welded	Room	124.0 (855)		_	_
	Manual gas tungsten arc welded ³	Room	118.5 (817)			_
*Average of 73 tests.	'Average of 33-34 t	ests.	² Average of 18 tests.	³ Heat-treat	ted at 1950°F (1066°C),	rapid quenched.

AVERAGE AGED DUCTILITY, SHEET*

Aging Temp., °F (°C)	Aging Time, min.	Elongation in 2 in. (50.8 mm), percent	
1300 (704)	1	48	
	5	39	
	10	27	
	30	13	
1350 (732)	1	48	
	5	14	
	10	17	
	30	7	
1400 (760)	1	44	
	5	14	
	10	3	
	30	2	
1450 (788)	1	45	
	5	11	
	10	4	
	30	3	

*0.180 in. (4.6 mm) in thickness.

AVERAGE CORROSION DATA IN BOILING ACIDS*

Media	Concentration, percent by weight	Average Corrosion Rate per year mils mm		
Acetic Acid	10	0.5 <0.02		
	30	0.4 0.01		
	50	0.4 0.01		
	70	0.3 <0.01		
	99 (Glacial)	0.3 <0.01		
Formic Acid	10	0.3 <0.01		
	20	0.6 <0.02		
	30	0.7 <0.02		
	40	0.7 <0.02	·	
	60	0.5 <0.02		
	89	0.5 <0.02		
Hydrochloric Acid	1	0.8 0.02		
	2	3 0.08		
	5	5 0.13		
	10	7 0.18		
	15	11 0.28		
	20	15 0.38		
	20	20** 0.51**		
Phosphoric Acid	10	2 0.05		
(Chemically Pure)	30	3 0.08		
	50	6 0.15		
	85	25 0.63		
Sulfuric Acid	2	0.5 <0.02		
	5	3 0.08		
	10	2 0.05		
	20	0.7 <0.02		
	30	0.7 <0.02		
	40	0.9 <0.03		
	50	1 0.03		
	50	2** 0.05**		
	50	1*** 0.03***	· · · · · · · · · · · · · · · · · · ·	
	60	2 0.05		
	70	9 0.23		

*Determined in laboratory tests of 120 hours duration. It is recommended that samples be tested under actual plant conditions. All test specimens were heat-treated at 1950°F (1066°C), water quenched unless otherwise noted. **As gas tungsten arc welded. ***Aged 48 hours at 1000°F (538°C).

AVERAGE CORROSION DATA IN BOILING 20 PERCENT HCI, COLD REDUCED SHEET

Cold Reduction, percent	Average Corrosion Rate per year, mils mm		Hardness, Rockwell	
(as solution heat-treated)	14	0.36	B-92	
10	14	0.36	C-32	
20	14	0.36	C-38	
30	13	0.33	C-43	
40	14	0.36	C-44	
50	14	0.36	C-45	

ISOCORROSION DIAGRAMS*

The isocorrosion diagrams shown on this and subsequent pages were plotted using data obtained in laboratory tests in reagent grade acids. These data should be used only as a guide. It is recommended that samples be tested under actual plant conditions.

"All test specimens were solution heat-treated at 1950 "F (1066 "C), rapid quenched and in the unwelded condition.

HASTELLOY® B-2 alloy

HASTELLOY® B-2 alloy

STANDARD PRODUCTS

By Brand or Alloy Designation:

B-2, B-3[®], C-4, C-22[®], C-276, C-2000[®], D-205[™], G-3, G-30[®], G-50[®] and N

HASTELLOY Family of Heat-Resistant Alloys

S, W and X

HAYNES® Family of Heat-Resistant Alloys

25, R-41, 75, HR-120[®], 150, HR-160[®], 188, 214[™], 230[®], 230-W[™], 242[™], 263, 556[™], 625, 718, X-750, MULTIMET[®] and WASPALOY

Corrosion-Wear Resistant Alloy

ULTIMET®

Wear-Resistant Alloy

6B

HAYNES Titanium Alloy Tubular

Ti-3AI-2.5V

Standard Forms:

Bar, Billet, Plate, Sheet, Strip, Coils, Seamless or Welded Pipe & Tubing, Pipe Fittings, Flanges, Fittings, Welding Wire and Coated Electrodes

Properties Data:

The data and information in this publication are based on work conducted principally by Haynes International, Inc. and occasionally supplemented by information from the open literature, and are believed to be reliable. However, we do not make any warranty or assume any legal liability or responsibility for its accuracy, completeness or usefulness, nor do we represent that its use would not infringe upon private rights. Any suggestions as to uses and applications for specific alloys are opinions only and Haynes International, Inc. makes no warranty of results to be obtained in any particular situation. For specific concentrations of elements present in a particular product and a discussion of the potential health effects thereof, refer to the Material Safety Data Sheet supplied by Haynes International, Inc.

For More Information Contact:

Kokomo, Indiana 46904-9013 1020 W. Park Avenue P.O. Box 9013 Tel: 765-456-6012 800-354-0806 FAX: 765-456-6905

Anaheim, California 92806

Stadium Plaza 1520 South Sinclair Street Tel: 714-978-1775 800-531-0285 FAX: 714-978-1743

Arcadia, Louisiana 71001-9701

3786 Second Street Tel: 318-263-9571 800-648-8823 FAX: 318-263-8088 Windsor, Connecticut 06095 430 Hayden Station Road Tel: 860-688-7771 800-426-1963 FAX: 860-688-5550

Houston, Texas 77041

The Northwood Industrial Park 12241 FM 529 Tel: 713-937-7597 800-231-4548 FAX: 713-937-4596

England

Haynes International, Ltd. P.O. Box 10 Parkhouse Street Openshaw Manchester, M11 2ER Tel: 44-161-230-7777 FAX: 44-161-223-2412

France

Haynes International, S.A.R.L Zi des Bethunes 10 rue de Picardie 95310 Saint-Ouen L'Aumone Tel: 33-1-34-48-3100 FAX: 33-1-30-37-8022

Italy

Haynes International, S.R.L Viale Brianza, 8 20127 Milano Tel: 39-2-2614-1331 FAX: 39-2-282-8273

Switzerland

Nickel Contor AG Hohlstrasse 534 CH-8048 Zurich Tel: 41-1-434-7080 FAX: 41-1-431-8787

www.haynesintl.com

